Elephant Endotheliotropic Herpesvirus (EEHV) in Asia

Recommendations from the 1st Asian EEHV Strategy Meeting

Compiled by Sonja Luz and Lauren Howard
On behalf of the Asian EEHV Working Group
As a result of this 1st Asian EEHV Strategy Meeting in Canada, and the Netherlands, eight Asian elephant range countries were represented (Thailand, Vietnam, Laos, Cambodia, Malaysia, Indonesia, the Philippines, and Sri Lanka). Elephant specialists shared information, identified regional needs, and prioritised future EEHV-related projects. Eight Asian elephant range countries, only three (Thailand, Indonesia, and India), have laboratories capable of confirming EEHV.

Based on the above concerns, the Asian EEHV Working Group seeks the support of regional governments and international stakeholders in the following areas of immediate focus:

- To build capacity and increase awareness and education of EEHV amongst elephant care staff in Asia including keepers (mahouts), veterinarians, and government officials.
- To develop region-specific medical protocols, “standard operating procedures” that outline routine monitoring, rapid and accurate detection, and appropriate treatment of EEHV-associated disease.
- To closely collaborate within the region and internationally to identify and implement research projects to continue advancing the understanding of EEHV.

1. What is EEHV?
EEHV is an abbreviation for Elephant Endotheliotropic Herpesvirus, which can cause Endotheliotropic Herpesvirus Disease (EEHV-HD), which is specific to elephants. Endotheliotropic describes the tissue that the virus preferentially affects, i.e. endothelial tissue found on the inside of blood vessels. There are many different strains of EEHV. Most of the deaths in Asian elephants have been caused by EEHV1A. Other fatal strains in Asian elephants are EEHV1B, EEHV3, EEHV4 and EEHV5.

2. How is EEHV transmitted?
Herpesviruses are spread by mucosal secretions. Mucosal secretions include saliva, breast milk, and nasal and vaginal secretions. Available evidence suggests that EEHV can be found in elephant mucosal secretions and may be spread via similar mechanisms, such as trunk-to-trunk contacts.

3. Can people or other animals get EEHV-HD?
No, the disease can only affect elephants and is not infectious to humans or other animals.

4. Should an elephant with EEHV be isolated?
We do not believe that elephants with EEHV need to be isolated from other elephants. This is because of the fact that most elephants carry EEHV without getting sick. In addition, the majority of cases of EEHV-HD have been sporadic. However, direct transmission from another acute case cannot be ruled out completely. Finally, elephants are social animals and separating them from their herd is apt to increase their stress.

5. What is the incubation period of EEHV-HD?
Available evidence suggests that the incubation period for EEHV is probably between 7-14 days. This is similar to herpesvirus infections in other animals.

6. Why is EEHV important?
EEHV is important because it has caused a very large number of deaths in young Asian elephants. Asian elephants are highly endangered and have a low reproductive rate. The further loss of young elephants from the population, animals that are potential future breeders, has the potential to be absolutely devastating to the future of this magnificent species.

7. How can I better understand EEHV and EEHV-HD?
There is, unfortunately a great deal of misinformation about the disease. However, we recommend the website www.EEHVinfo.org as an excellent source of accurate information about the disease. The website is maintained by the researchers, veterinarians, and elephant managers who are studying the disease, treating the disease and caring for elephants with EEHV-HD. The information there is scientific and evidence-based. There are also multiple scientific publications and textbooks that cover EEHV and EEHV-HD. Fowler’s Zoo and Wildlife Medicine 7 Current Therapy (Saunders Press 2012) is devoted to the subject.

8. What happens to an elephant when it gets EEHV-HD?
EEHV causes damage to the lining of small blood vessels, primarily capillaries. When this happens, blood starts to leak out of the vessels. The result is progressive blood and fluid loss. As the damage to the blood vessels worsens, the heart starts to pump less efficiently, and ultimately the elephant dies of shock and anaemia. This is similar to what happens when Ebola virus, a haemorrhagic virus, causes disease in people.

Surprisingly, most elephants carry EEHV latently and show no signs of disease. A few elephants develop benign skin lesions. We do not know why some elephants develop fatal haemorrhagic disease with this virus.
9 What ages of elephants are affected by EEHV-HD?
EEHV-HD can affect elephants of any age, but the elephants that have the highest risk of dying from fatal haemorrhagic disease are young elephants between 1 and 8 years of age.

10 What are the signs of EEHV-HD?
Early signs of EEHV-HD are very non-specific. Some elephants will be sleepy (lethargic), others will not sleep at all. Mild gastrointestinal signs (colic) may be seen, including constipation or mild diarrhoea and a decreased appetite. Lameness (e.g. a stiff leg) has also been reported. As the disease progresses, signs associated with blood loss and shock are seen. These include an increased heart rate and an increased breathing rate. As blood leaks from the heart, it becomes less efficient, and blood and oxygen do not circulate efficiently around the body.

Late-stage signs include cyanosis (a blue colour) of the tongue and a swollen head, which represents oedema (fluid) leaking into the tissues. Elephants experiencing brain bleeds may show neurologic signs or severe sleepiness. Mouth lesions have been reported in several cases, a symptom that generally occurs later in the disease.

11 Can EEHV-HD be treated and what is the success rate?
Nine survivors have been reported from the United States, two from Thailand and one from Cambodia. All elephants received extensive treatment. The primary treatment is aggressive fluid therapy.

Antivirals such as famiclovir, ganciclovir, and acyclovir are also typically administered. Other supportive treatments include anti-inflammatories, antioxidants, diuretics, and plasma transfusions. The success rate remains low and the disease has a 70% mortality rate, which is exceptionally high and on par with Ebola virus. However, it is clear that the survival rate increases with early aggressive therapy.

The survival rate is low for several reasons. First, the virus is extremely virulent and disease progresses rapidly. Laboratory diagnosis of the disease can take more than 24 hours, yet the disease can kill within 24 hours. Thus, treatment must begin before EEHV is confirmed. In addition, treatment requires aggressive, around-the-clock care, necessitating trained animals, experienced veterinarians, and access to testing and treatment supplies.

13 How can we prevent EEHV-HD and is there a vaccine?
At this point, we do not have a vaccine or other ways to prevent the disease. We recognise however, that elephants identified early with the disease and treated in the early stages of disease have the best chances of survival. Thus, training of staff, both mahouts and veterinarians, to recognise early signs of disease is important. Training calves ahead of time to tolerate sample taking (blood draws) and treatment can also help if they become sick. Having appropriate testing equipment and medications for treatment readily available is also an important component. Finally, monitoring a herd of elephants with routine blood draws and viral testing can alert caretakers to an impending problem.

14 What should we do if we have a suspected case of EEHV-HD?
If a calf or young elephant between the age of 1 and 8 years presents with vague signs of disease as described in #10 above, the first step in treatment should be administration of rectal fluids at a dose of 10-20 ml/kg. This can halt some of the early signs of shock and should be repeated several times a day. This is also an appropriate approach for the treatment of other diseases that may present similarly, since typically diagnosis will take a while. Starting antivirals should also be done as soon as possible even before diagnosis is confirmed. Collecting blood to test for EEHV as well as other possible diseases should also be started immediately. Because EEHV can mimic several bacterial diseases in their early stages, many sick elephants are typically started on antibiotics as well. There are excellent planning and treatment documents on the EEHVinfo.org website.

15 What other diseases cause signs similar to EEHV?
The early stages of EEHV can look extremely similar to various infectious bacterial diseases such as Salmonella, E. coli, and Pasteurella, as well as viral diseases such as encephalomyocarditis virus (EMCV). In all cases, fluid administration is an appropriate first step. Blood should also be collected and serum banked. For EEHV, polymerase chain reaction (PCR) testing of whole blood is necessary for confirmation of disease.

16 Which countries are affected by EEHV-HD?
EEHV-HD is a worldwide disease, and confirmed lethal cases have been reported in wild elephants in multiple Asian range countries including Myanmar, Laos, Malaysia, India, Thailand, Indonesia (Sumatra), and Cambodia. Several other Asian countries have had suspected cases. EEHV-HD has also occurred in multiple zoos around the world.

17 Who is performing EEHV research?
Multiple laboratories world-wide are studying the disease. In the United States, these include Baylor College of Medicine, Johns Hopkins University, Cornell University, and the Smithsonian’s National Zoo. In Europe, these include Animal and Plant Health Agency in Weybridge (UK), Erasmus University Rotterdam (NL), Artemis One Health in Utrecht (NL), Free University Berlin (DE), Veterinary University Zürich (CH).

18 Can all elephants get EEHV-HD?
EEHV-HD can affect all elephants, both Asian and African elephants. Furthermore, this is a disease of both wild and captive elephants. However, the group that is most at risk is young Asian elephant calves and juveniles, either wild or captive.

19 How long has EEHV existed?
EEHV most likely co-evolved along with the evolution of elephants. Thus, it has been around for millions of years.

20 What are risk factors for EEHV-HD in elephants?
Age appears to be a risk factor as young elephants are more often affected. Changes in immune status may be part of the picture, as the timing of the disease may, in some cases, be associated with loss of maternal antibodies or concurrent disease. Whether stress is part of the disease and what constitutes stress is still not clear. We are still working to identify other risk factors.
21 Should EEHV impact the translocation of elephants?
The movement of young elephants in high-risk age groups to a new facility or of other elephants into a facility that already hosts young elephants, has, in some cases occurred shortly before an EEHV-HD case. Thus, there may be a risk, but the extent of that risk and what other variables are involved are still being investigated.

22 How often should a healthy elephant be tested for EEHV?
Under ideal circumstances, juvenile elephants within vulnerable age groups (1-8 years of age) should be monitored every week (checking for the presence of EEHV in the blood). This is based on the incubation time of the disease (7-14 days).

However, it is recognised that the capacity or resources to achieve this goal may not be available. In these circumstances, other behavioral or simple clinical information can be used to identify possible emerging disease. Confirmation of EEHV involvement, even if sporadic or delayed, is encouraged.

23 Are there regulatory/legal issues involved in EEHV?
At this point, there are no regulatory or legal issues. Because the disease does not affect people or other animals, and because it is not usually directly transmitted from elephant to elephant, regulation has not been needed.

24 What do we still need to learn about the disease?
Unfortunately, a great deal still remains unknown. These include why some elephants die of haemorrhagic disease and others are unaffected by it, what antivirals would be best for treatment, and the pathophysiology of the virus (i.e., the physiological effects of the virus within the body of the elephant.) Because we have still not been able to grow the virus in culture, the virus has been difficult to study.

Fortunately, there is some good news. The virus has recently been completely sequenced which will enable virologists to learn a great deal about this very unusual virus. We also now know that early detection, diagnosis, and treatment can save lives.

Educating those who care for elephants about this deadly disease is a priority and working together so that we can learn from each other’s experiences is also essential.

25 How is the presence of EEHV confirmed?
Currently conventional polymerase chain-reaction (cPCR) and quantitative PCR (qPCR) are used to diagnose EEHV in Elephants. These assays look for the presence of viral DNA in the sample. Clinical pathology, including a complete blood count may show decreases in total white blood cell numbers, particularly monocytes, and platelets. A blood smear may show reactive white blood cells and the presence of band heterophils, a type of premature white blood cell associated with systemic inflammation. These blood cell changes may precede the appearance of clinical signs. The presence of clinical signs can provide suspicion of disease as well.

Post mortem necropsy findings include extensive haemorrhage within multiple body cavities, pericardial effusion, and oedema of multiple organs, including the brain. Histopathology will show vasculitis and thrombosis, often most severe in heart, kidneys and liver. Basophilic intranuclear inclusion bodies are also characteristic of EEHV but can sometimes be difficult to find.

Emergency Care
For Elephants Clinically Ill from Elephant Endotheliotropic Herpes Virus–Haemorrhagic Disease (EEHV-HD)

Time is essential when treating elephants with EEHV-HD. Extremely sick calves and juveniles may not look particularly ill, and may eat, drink, and participate in training, until literally moments before they die. Waiting until the animal looks very sick is associated with a poor prognosis and death. Even if a young elephant looks only mildly ill or uncomfortable, veterinarians and caretakers are strongly urged to start rectal administration of fluids. This technique can be life-saving because what appears to kill young elephants suffering from EEHV-HD is vascular shock. Rectal fluids can alleviate the early physiological effects of shock and prevent the spiralling of events that leads to death.

2.1 ESSENTIAL

Collect baseline information
• Blood collection:
 - Essential: EDTA (purple topped tube) whole blood and smear; EEHV qPCR (or cPCR if not available) and haematology (including platelets).
 - Serum (red topped tube) or plasma (green topped tube): biochemistry.
 - Cytomorphology: coagulation panel.
 - Serum or plasma (EEHV-gB ELISA antibodies)
 - Samples should also be stored for future research (please store any leftover blood collected).

• If possible contact the nearest diagnostic lab that runs PCR and qPCR for emergency diagnosis and arrange sample transport.
• Anamnesis: activity pattern, appetite, sleeping pattern.
• Physical examination: body posture, evidence of oedema around eyes, head, neck and ventral abdomen, temperature, blood pressure, changes in colour or ulceration of mucous membranes. Auscultation of the heart and lungs can be performed on calves weighing less than 3,000 lb (1,200 kg). Tachycardia, murmurs and arrhythmias should be noted.

• Blood samples should be tested frequently, even DAILY, using qPCR in order to adjust the treatment regime according to the viral load. If qPCR is not available, evaluation of the appearance, number and distribution of white blood cells can be an indication of how the elephant is responding internally.

Sample collection and first treatment may require standing sedation
• Standing sedation can be performed using Xylazine or detomidine (preferred) in combination with butorphanol.
 - Xylazine: 0.04-0.08 mg/kg IM (can be reversed with yohimbine or atipamezole) OR
 - Detomidine 0.01-0.022 mg/kg IM (can be reversed by atipamezole at 3 times the dose of detomidine)
 + Butorphanol 0.045-0.075 mg/kg given at the same time as detomidine. Butorphanol can be reversed with nalbuphine at 2.5-5 times the dose of butorphanol in emergency situations, but reversal is not essential and should preferably not be carried out if the calf is considered to be in pain.

• Blood samples should be tested frequently, even DAILY, using qPCR in order to adjust the treatment regime according to the viral load. If qPCR is not available, evaluation of the appearance, number and distribution of white blood cells can be an indication of how the elephant is responding internally.

Note: Butorphanol could be given at the higher end of the range, by itself (without detomidine) for adequate sedation in some elephants.
Supportive fluid therapy

- Rectal administration of lukewarm, clean water is the first choice of fluid therapy in sick calves and is superior to intravenous administration. It should be given through a garden hose or rubber tubing after careful removal of faecal balls from the distal part of the rectum (use sufficient lubricant in order to avoid irritation of the rectum mucosa which causes peristaltic activity). When the hose is placed over the horizontal ridge in the rectum (approximately 1 elbow length from the anus), the tube can be advanced for another 100 cm (if possible). A gastric pump can be used; if not available use a large funnel.
- Rectal fluids should be administered a minimum of 3-4 times per day, up to every 2 hours. A bolus treatment of 10 to 20 ml/kg dose is often used. When finished, the tail should be held down for at least one minute. Excess fluids will simply be expelled.
- Placement of an intravenous catheter (16-20G IV catheter, with a minimum length of 6 cm to prevent perivascular leaking) in a large, peripheral vein is recommended for:
 - Plasma transfusion (supplementation of platelets) after cross matching recipient blood with donor plasma at 0.5-2 ml/kg BW. The donor should be an adult elephant, preferably PCR-screened on EEHV-viraemia at the time of blood collection.
 - Administration of other IV-only medications. Please note that the ear veins are very susceptible to vasculitis, associated with perivascular administration of drugs.
 - Placement of an intravenous catheter (16-20G IV catheter, with a minimum length of 6 cm to prevent perivascular leaking) in a large, peripheral vein is recommended for:
 - Plasma transfusion (supplementation of platelets) after cross matching recipient blood with donor plasma at 0.5-2 ml/kg BW. The donor should be an adult elephant, preferably PCR-screened on EEHV-viraemia at the time of blood collection.
 - Administration of other IV-only medications. Please note that the ear veins are very susceptible to vasculitis, associated with perivascular administration of drugs.

Sloughing of the ear pinna distal to the affected vein is likely in these cases. Extra care should be taken with drugs that are particularly caustic.

- IV fluid therapy, which will require follow up with rectal fluids.

2.2 HIGHLY RECOMMENDED

Plasma transfusion

Fresh plasma is currently considered one of the best supportive therapies to provide, as platelets, clotting factors and potentially protective antibodies may be provided. Note that the freezing process activates the platelets, which renders them useless at the time of transfusion. Therefore - where possible - freshly collected plasma is preferred. The following should be considered for plasma transfusions:

- If frozen plasma is available, this can be given in an early stage of the disease to save time (despite the activated and spent platelets).
- Blood collection from an adult elephant (plasma donor) should be initiated to provide fresh plasma as soon as possible.
- A sterile, closed collection system is needed for plasma collection. Open collection systems, such as those that use a syringe, cannot be left to sit for any period of time as they are subject to bacterial invasion.
- Cross-matching the donor animals with the recipients, especially if one donor will be used on multiple occasions. (See facing page)

Plasma transfusion

Fresh plasma is currently considered one of the best supportive therapies to provide, as platelets, clotting factors and potentially protective antibodies may be provided. Note that the freezing process activates the platelets, which renders them useless at the time of transfusion. Therefore - where possible - freshly collected plasma is preferred. The following should be considered for plasma transfusions:

- If frozen plasma is available, this can be given in an early stage of the disease to save time (despite the activated and spent platelets).
- Blood collection from an adult elephant (plasma donor) should be initiated to provide fresh plasma as soon as possible.
- A sterile, closed collection system is needed for plasma collection. Open collection systems, such as those that use a syringe, cannot be left to sit for any period of time as they are subject to bacterial invasion.
- Cross-matching the donor animals with the recipients, especially if one donor will be used on multiple occasions. (See facing page)

Plasma transfusion

Fresh plasma is currently considered one of the best supportive therapies to provide, as platelets, clotting factors and potentially protective antibodies may be provided. Note that the freezing process activates the platelets, which renders them useless at the time of transfusion. Therefore - where possible - freshly collected plasma is preferred. The following should be considered for plasma transfusions:

- If frozen plasma is available, this can be given in an early stage of the disease to save time (despite the activated and spent platelets).
- Blood collection from an adult elephant (plasma donor) should be initiated to provide fresh plasma as soon as possible.
- A sterile, closed collection system is needed for plasma collection. Open collection systems, such as those that use a syringe, cannot be left to sit for any period of time as they are subject to bacterial invasion.
- Cross-matching the donor animals with the recipients, especially if one donor will be used on multiple occasions. (See facing page)

Cross-match

Based on design elaborated by Houston Zoo, Inc.

STEP ONE Prepare a 3-5% red cell suspension.

1. Collect blood from both donor and recipient in EDTA.
2. Centrifuge the tube and separate the plasma from the red cells. Save both.
3. Place 1 drop of recipient red cells into a small (2-5 ml) clean test tube.
4. Add approx. 1-2 ml of normal saline to the tube with the red cells (or 1 drop RBC to 40 drops saline).
5. Centrifuge at 2500 RPM for 20 seconds.
6. Remove the supernatant, leaving the red cell button on the bottom.
7. Repeat steps 4-6 three times (for a total of 4 washes).
8. Add 1 drop of newly washed recipient red cells to a new test tube.
9. Add approximately 20-40 drops of saline and mix to suspend the red cells. This should be an approximate 3-5% cell suspension to work with.

STEP TWO Minor cross-match (for plasma transfusion).

1. Add 1 drop of the recipient’s 3-5% red cell suspension to a labelled test tube. Add 1 drop of the recipient’s 3-5% red cell suspension to another labelled test tube to be used as a control.
2. Add 2 drops of donor plasma or serum to the test tube.
3. Add 2 drops of saline to the control tube.
4. Incubate these tubes at 37°C for 15 minutes.
5. Centrifuge the tubes for 20 seconds at 2500 RPM.
6. Observe the supernatant for signs of haemolysis. If present in the cross-match tube and not the control tube, the match is not compatible. If present in both, start again with a new cell suspension.
7. If no haemolysis, then gently rock the test tube back and forth to re-suspend the cell button. Observe the cell button while rocking the tube and grade for the presence of agglutination. Grade on a 0-4 scale where 0 is no agglutination and 4 is heavy clumping. Record your results.

STEP THREE Major cross-match (for whole blood transfusion).

1. Add 1 drop of the donor’s 3-5% red cell suspension to another labelled test tube to be used as a control (saline control).
2. Add 2 drops of recipient’s plasma or serum to the cross-match tube.
3. Add 2 drops of saline to the saline control tube.
4. Incubate these tubes at 35-37°C for 30 minutes.
5. Centrifuge the tubes for 15 seconds at 1000xg.
6. Observe the supernatant for signs of hemolysis. If haemolysis present in the cross-match tube but not the saline control tube, the blood is not compatible. If haemolysis present in both, start again with a new cell suspension.
7. If no haemolysis observed, then gently tilt the test tube back and forth to re-suspend the cell button. Observe the cell button while rocking the tube and grade for the presence of agglutination. Grade on a 0-4 scale where 0 is no agglutination and 4 is single button. Record your results.
8. Repeat step 7.

NOTE: To have stronger reaction Anti-Elephant IgG can be added to the protocol: The red cells in the tube are washed 3 times in saline by centrifugation at 1000xg for 1 minute. Saline is completely discarded, followed by addition of one drop of 14 mg/ml rabbit anti-elephant IgG. For more information please contact: Preeyanat Vongchan (preeyanat.v@cmu.ac.th) and Chatchote Thitaram (chatchote.thitaram@cmu.ac.th), Chiang Mai University.

Photo: Christopher Stremme

Rectal fluid therapy.
Antiviral drug administration
Antiviral drugs are thought to have an effect during the early stages of viral replication. It is therefore recommended that antiviral therapy starts as early as possible. However, treatment should also be attempted in acute cases. The efficacy of the following drugs has not been proven, but all survivor cases have been treated with one or other of the following drugs:

- Famiclovir: 15 mg/kg orally or rectally TID (grind with mortar and pestle, mix with water to make into a paste and further dilute with water) or (published dose), 1-2.5mg/kg PO, IV or IM SID (anecdotal dose) or suxibuzone (loading dose 6 mg/kg/day followed by 3 mg/kg/day).
- Famciclovir: 15 mg/kg orally or rectally TID (grind with mortar and pestle, mix with water to make into a paste and further dilute with water) or (published dose) or suxibuzone (loading dose 6 mg/kg/day followed by 3 mg/kg/day).

Opioids for pain relief
Opioids are a useful adjunct to providing pain relief and, in some cases, mild sedation to assist in the management of animals being treated. There is the possibility of behavioural changes in the elephant when using opioids, and trained behaviours may well be last or less responsive. A dose of 0.098-0.014 mg/kg butorphanol IM (repeat every 3-4h) is recommended for analgesia.

Adjuvant therapies
- Non-steroidal anti-inflammatory drugs

Although EEHV-HD is thought to be a vasculopathy as opposed to a vasculitis, anti-inflammatories may be indicated as part of the analgesic regime as well as to reduce inflammation. Non-steroidal anti-inflammatory agents (NSAIDs) may play a useful role in early management of the disease. However, it should be noted that in human medicine, NSAIDs are contraindicated in cases where peripheral oedema or haemorrhagic diathesis are present, due to the decreased glomerular filtration rate and the effects on coagulation seen when using NSAIDs. The analgesic and anti-inflammatory effects of these drugs should be weighed against these possible side effects. Flunixin meglumine or other NSAIDs should be administered to well hydrated patients, who are preferably receiving concurrent fluid therapy. Administration of omeprazole 10.7-1.4 mg/kg PO SID based on the equine dose for gastrointestinal protection during NSAID treatment should be considered.

Antibiotic administration
Antibiotics should be considered for treatment of underlying conditions and/or secondary infections associated with leukopenia and immunosuppression:

- Cefiotfur: 1.1mg/kg IV BID
- Enrofloxacin: 2.5mg/kg PO or rectally SID
- Marbofloxacin: 2mg/kg IV, IM, SQ SID has been used
- Amoxicillin: 11mg/kg IM SID
- Pencillin G: 20,000-50,000 IU/kg IM or IV TID-BID (SID administration has been used in EEHV survivor cases in Asia)
- Pendistrep LA: 20,00-50,000 IU/kg IM q24h, 36h, 48h or 72h (q72h administration has been used successfully in EEHV-HD cases in Asia)
- Any suitable antibiotic with presumed action against invasive gut flora

Intensive Care Of The EEHV-HD Patient
In any suspected or confirmed EEHV-HD case, aggressive supportive therapy and close monitoring of the patient are essential. Rectal administration of fluids (water) is the treatment of first choice. Placement of an intravenous catheter in a large, peripheral vein is recommended for plasma transfusion (supplementation of platelets) after cross matching recipient blood with donor plasma and administration of other medications. The access to veins should not be jeopardised by unnecessary administration of drugs that can also be administered via another route. If treatment is not possible under training or manual restraint, sedation will be required.

Antiviral medication is recommended to reduce or eliminate viral replication and thus reduce the viral load in the patient. Although there is no hard evidence that the antivirals mentioned in this protocol are effective, they are recommended until proven that they do not work.

Sedatives may be administered to facilitate treatment and to manage pain. Low doses of butorphanol have been safely used in clinical cases. Antibiotics have no effect on viral infections, but must be given to affected animals to prevent and treat secondary and/or underlying infections. If possible, the initial dose should be administered intravenously. Following cessation of intravenous treatment, a change to intramuscular or oral products will be made if appropriate.

Light sedation of adult elephants
- It may be necessary to sedate the dam or other adult herd mates so they are not stressed during manipulations of a calf.
- Butorphanol 0.006 mg/kg IM and Detomidine 0.0026 mg/kg IM (In adult female Asian elephants, 20mg Butorphanol and 10mg Detomidine have been effective)
- Sedation can be reversed as described above but is not necessary.
- Alternatively, xylazine or other sedative agents (e.g. azaperone) can be used if detomidine is unavailable.

Intravenous catheter placement
A temporary IV catheter (16-20 G, minimum 6 cm length) may be placed in the ear, rear leg, or front leg. Please note that elephants in an intensive care environment can be subject to secondary infections. Attention to hygiene and biosecurity is very important in elephants being treated for EEHV-HD, particularly due to their immuno-compromised status.
Intravenous fluid therapy
A bolus of ‘isotonic’ IV fluids (0.3 to 1 ml/kg in a calf) can be given to a dehydrated or ‘shocky’ elephant as a resuscitative measure; this bolus could be repeated up to three times with re-evaluation of the patient and vital signs after each bolus. **Asian elephants have very low serum osmolality and are hyponatraemic and hypochloremic compared to other species. Therefore fluids considered isotonic in other species (0.9% saline, ringers etc.) will be hypertonic in an elephant, and draw fluid into the vascular space.** IV fluids should always be supplemented by large amounts of rectal fluids (tap water).

Plasma transfusion
Colloids, such as fresh or frozen plasma or hetastarch, are more effective than crystalloid fluids for immediate volume expansion in viraemic or seriously ill animals. The larger molecules in these fluids do not leak out of capillaries as easily, and increase plasma volume. In this respect, a (preferably fresh) plasma transfusion has high priority as it provides thrombocytes and coagulation factors. As the preparation of fresh plasma is time consuming, banked plasma can be administered as an emergency treatment.

To supplement platelets, frozen plasma is NOT suitable, because it contains activated thrombocytes, which will be useless in case of disseminated intravascular Coagulopathy (DIC) as is likely the case in EEHV-HD. The best plasma to administer is the so called Platelet Rich Plasma (See below).

In addition, plasma from a donor with a high antibody titre may help to bind virus particles in the patient although the role of antibodies is not yet well understood in EEHV-HD). Plasma should only be administered intravenously after cross-matching donor plasma and recipient whole blood samples (a minor cross-match) to assure compatibility. Additionally, it would be ideal if the donor animal’s blood be PCR tested to ensure the donor does not have a high EEHV viremia. This information would also be useful as retrospective information.

As there will probably be no time for PCR-screening, this can be performed later on using the stored sample (stored plasma should be PCR screened at the time of collection). The first 100 ml should be given slowly, and heart rate, respiratory rate, and temperature should be monitored. Possible transfusion reactions include fever, rash, or anaphylaxis. Mild signs can be treated by decreasing the rate of transfusion. More severe reactions should be addressed by stopping the transfusion.

If no reaction is seen, the transfusion rate can be increased to 0.5-2 ml/kg BW. Clinical improvement may be seen at a plasma dose of 0.5 ml/kg.

Summary
Use banked (frozen) plasma for emergency treatment (coagulation factors, antibodies, colloids) and start preparing fresh plasma (platelets, coagulation factors, antibodies, colloids). Please note that a major cross-match needs to be carried out if whole blood is transfused.

Note: Plasma must be frozen within 6 hours to retain clotting factors.

How to collect Platelet Rich Plasma without specific blood bags:
A. Collect blood in a container with acid citrate dextrose (ACD) as an anticoagulant at the ratio of 6 to 1 and mix gently. In the absence of specific blood bags, empty NaCl-infusion bags or plastic infusion bottles can be used (maintain sterility)! The sample can be kept at room temperature (20-25°C). The best plasma to administer is the so called Platelet Rich Plasma (See below).

B. Instead of ACD, heparin can be added to the donor blood [6,250 IU heparin/liter whole blood]
1. Centrifuge at 200g for 10 minutes at room temperature.
2. Remove plasma and change to a new tube.
3. Centrifuge at 1,6500 for 10 minutes.
4. Platelet rich plasma (at bottom of tube) can be kept at 4°C and be used within 5 days.
5. If heparin was used as anticoagulant, this can be reversed by protamine HCl (10 mg protamine HCl/1,000 IU heparin given IV).

Oxygen therapy
Supplemental oxygen therapy should be administered, when possible, to all patients with clinical signs undergoing treatment for EEHV-HD. Oxygen can be administered at 2-4 l/ minute via a flexible tube passed into one nostril of the trunk. If the elephant will not tolerate oxygen therapy while awake, it may be possible to slip the tube into the trunk while the elephant is sleeping.

Equipment and supplies
The following equipment and supplies will be needed on hand for support during therapy.

Drugs and equipment needed:
- Banked plasma (frozen at -80°C)
- Antiviral (Famciclovir, Ganciclovir, Acyclovir)
- Sedatives (Detomidine, Butorphanol, Xylazine)
- Reversals (Atipamezole, Naltrexone)
- Antibiotics (Ceftiofur, Penicillin, Amoxicillin, Enrofloxacain, Cephalixin, etc)
- Glucocorticosteroids
- NSAIDs (Flunixin meglumine, Meloxicam, Ibuprofen, Phenylbutazone, etc)
- Plasma transfusion set
- “Plasma extractor” [See Page 15]
- I.V. fluids
- Syringes
- Needles
- 16-20 GA catheters, min 6 cm length
- Rectal fluid kit (tube and gastric pump or large funnel)
- I.V. administration sets with injection ports
- Standard extension set
- Tape for holding catheter in place and skin glue
- Stethoscope
- Thermometer
- Mortar and pestle
- Exam gloves
- OB sleeves and lube
- Gauze
- Flashlights/ head lamps
- Towels
- Inner tubes (various sizes)/gym mats — to be used for cushioning and support in the event of a full immobilisation procedure
- Surgical prep: Chlorhexidine scrub or Povidone iodine and alcohol
- Oxygen bottles and regulator
How To Make A ‘Plasma Extractor’

If you do not have one of these manufactured Plasma Extractors, you can make one!

Materials
- Two pieces of Plexiglas
- Duct tape

Step 1: Prepare two pieces of Plexiglas to match the following measurements. Note difference in thickness to provide sturdiness.
 - 1st piece: Length= 22.9 cm, Height= 30 cm, Width= 1.2 cm
 - 2nd piece: Length= 22.9 cm, Height= 30 cm, Width= 0.5 cm

Step 2: Align the pieces of Plexiglas together evenly and hold them together. Then wrap duct tape around the bottom ends of the pieces to keep the Plexiglas together.

Make sure that you can pry the untaped edges apart. The Plexiglas must be able to part wide enough for a full bag of whole blood to fit in between the pieces.
INTENSIVE CARE

In-house Plasma Separation Procedure For Elephants
Design elaborated by Houston Zoo, Inc.

Materials
- Sterile blood collection bag containing anticoagulant citrate phosphate dextrose adenine solution [CPDA-1] USP for collection of 450 ml of whole blood. Establish weight of the empty plasma bag prior to collection (See Procedure 13).
- Refrigerator with temperature 0-4 °C
- Scale (g)
- Plasma Extractor (See previous page on how to make one)
- 1-2 Kelly or Crile haemostats
- 1 smooth-jaw haemostat
- Plasma Extractor – handmade vs. commercial
- Hand-held blood bag tube stripper/cutter/sealer tool
- 4 plastic clamps
- Metal clips. Establish weight of a single clip. (See Procedure 13)

Procedure

2. Hang the bag in refrigerator for 6-24 hours to allow for gravitational separation of plasma from red cells. Temperature should be between 0-4 °C. (Figure A)
3. Carefully remove the blood bag from the refrigerator. Avoid re-suspending the separated red blood cells into the plasma (minimise abrupt motions when handling the collection bag). (Figure B)
4. Begin plasma separation process by inserting the blood bag into:
 a.) the “Plasma extractor” or
 b.) 2 pieces of Plexiglas duct-taped together. Lay the empty plasma bag beside the extraction apparatus. (Figure C)
5. Break the plastic barrier piece connecting the blood bag to the empty plasma bag. (Figure C)
6. With one hand, slowly apply gradual pressure to the Plexiglas pieces and with the other hand, use haemostats to hold the connection tubing. The plasma from the blood bag should be flowing into the plasma bag. Be cautious of disrupting the sediment. (Figure D)
7. When most of the plasma has separated into the plasma bag, quickly clamp off the connecting line with haemostats. Add secondary plastic clamps for extra security. (Figure E)
8. Using the handheld stripping tool, begin easing the remaining plasma in to the collection bag. (Figure F)
9. Using another set of haemostats, clamp the line closer to the plasma bag, leaving approximately 30 cm of tubing. Add secondary plastic clamps if necessary. (Figure G)
10. Cut the connecting line so that the plasma bag separates from the blood bag.
11. To properly seal the plasma bag for storage, tie 1-3 knots at the open end of the tubing. (Figure H)
12. Make a loop with the tubing and apply 2-3 evenly spaced metal clips. (Figure I) Slide the first metal clip as close to the bag as possible. Clamp the clips down with the multi-tool. (Figure J)
13. Weigh the full plasma bag. To determine actual plasma volume, subtract established materials weights [empty plasma bag and metal clips] from the weight of the full plasma bag.
14. Label the plasma bag with animal ID number, collection date and plasma volume.
15. Store the plasma in a freezer (preferably -80°C). However, use fresh plasma for treating EEHV-HD as freezing will activate the thrombocytes, making them useless for EEHV-HD treatment.
EEHV Sample Monitoring And Collection Protocol

Recommended sample collection
For elephants that are: A) healthy, B) suspected to be infected, or C) post-mortem.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>HEALTHY</th>
<th>SICK</th>
<th>POST-MORTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pictures</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Blood smear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Blood collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Biochemistry and ELISA</td>
<td>X</td>
<td>X</td>
<td>X*</td>
</tr>
<tr>
<td>ii. Whole blood for PCR</td>
<td>X</td>
<td>X</td>
<td>X*</td>
</tr>
<tr>
<td>4. Trunk wash (or saliva)</td>
<td>X</td>
<td>X</td>
<td>X*</td>
</tr>
<tr>
<td>5. Lesion swab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Tissue samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Histopathology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. PCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. All organs, including bone marrow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If recently deceased.

Description of sampling methods and supplies necessary for each method is listed below.

1. Pictures
Pictures of elephant before, during, after infection and/or post-mortem are recommended.

2. Blood smear
Blood smear for CBC and blood morphology

Supplies
- Clean microscope slides
- Wright-Giemsa stain
- 100% methanol

Directions
- Take one drop of blood and make a blood smear on clean microscope slide. Allow to dry. To prevent damage, fix the slide by dipping it in 100% methanol for one minute and allow to dry. Prepare slide using Wright-Giemsa stain for microscopic analysis.

3. Blood collection

i. Serum for biochemistry and antibody ELISA testing (i.e. red-top tube)

Supplies
- Red-top blood collection tubes
- 18-20 gauge butterfly scalpel set
- Centrifuge
- Disposable Pasteur pipettes
- Storage tubes (2 ml)
- -20°C freezer (or cooler with ice until access to -20°C freezer)

Directions
Collect blood in red-top tube. Keep upright for 5-10 minutes and allow to clot at room temperature. Centrifuge for 1500 g x 10 min. With pipette, gently aspirate out serum. Place serum (2 ml) into multiple storage tubes. Store samples at -20°C. Under field conditions, place under ice and transport to -20°C as soon as possible.

ii. Methods to preserve blood until receipt in laboratory for PCR

A. EDTA whole blood
1. If the whole blood can be transported to the laboratory within a day or two, no preservation is necessary (although keeping on ice or frozen is preferred).
2. If transport to the laboratory will not be within 48 hours, whole blood or ground up tissues can be placed in the wells of a GenPlate (#GVN3P-20, Gentegra.com) or FTA/FTA Elute Card (GE Healthcare Life Sciences, or Sigma-Aldrich) and dried at room temperature. This allows storage and shipment at room temperature or higher. DNA can be recovered from the GenPlate and FTA/FTA Elute Card for testing.

B. Buffy coat

Supplies
- Purple-top blood collection tubes
- 18-20 gauge butterfly scalpel set
- Centrifuge
- 20-gauge syringe
- 1-cc blue-tip or Pasteur tip micropipette
- Anti-DNase solution or anti-RNase solution:
 - DNAgard® Blood (Biomatrica, San Diego, CA; Sigma Aldrich 62501)
 - RNA later (Fischer Scientific AM7022; Sigma Aldrich R0901)
- Storage tubes (~2 ml)
- Cooler with ice

Directions
Recover minimum of 30 ml of trunk wash fluid. Use 60 ml sterile saline solution infused into trunk, have elephant raise trunk, then collect saline into clean zip-lock bag. Transfer trunk wash into clean 50 ml conical vials. Centrifuge conical tubes at 900 g x 5 min. Carefully remove supernatant without disturbing pellet. Place equal volume of anti-DNase or anti-RNase solution over pellet. Mix tube. Keep over ice for shipment. Freeze pellets at -80°C if banking for later processing.

4. Trunk wash or saliva
Trunk wash (or saliva) for surveillance of healthy or clinically ill patients. Note: Trunk wash or saliva testing cannot be used for diagnosing a case of EEHV viremia; only blood can be used for diagnosis.

Supplies
- 60 ml sterile saline solution
- Clean ziplock bag
- 50 ml conical vials
- Centrifuge
- Disposable pipette
- Anti-DNase solution or anti-RNase solution:
 - DNAgard® Blood (Biomatrica, San Diego, CA; Sigma Aldrich 62501)
 - RNA later (Fischer Scientific AM7022; Sigma Aldrich R0901)
- Cooler with ice

Directions
Collect blood in purple-top blood collection tube. Gently invert ~10 times. Allow to sit for 1 hour at 4°C if possible; room temperature okay. Centrifuge at 1500 g x 10 min. Use 20-gauge syringe to remove plasma and discard. If possible, with 1-cc blue-tip or Pasteur-tip micropipette, carefully remove the clear buffy coat without disturbing the layer. Place buffy coat into equal volume of anti-DNase or anti-RNase solution over pellet. Mix tube. Keep over ice for shipment. Freeze pellets at -80°C if banking for later processing.

5. Lesion swabs
If clinically ill patient has visible lesions, take swabs of lesions if possible.

Supplies
- Swabs in tubes with anti-DNase solution or anti-RNase solution. Any of the following can be used to preserve the swabs until receipt by laboratory:
 - DNAgard® Blood (Biomatrica, San Diego, CA; Sigma Aldrich 62501)
 - RNA later (Fischer Scientific AM7022; Sigma Aldrich R0901)
 - RNA Protect Cell Reagent (#76526, Qiagen)
- Cooler with ice

Directions
Swab local lesions and store in anti-DNase solution, anti-RNase solution, or PBS. Preserve in -80°C until analysis. Under field conditions, place under ice and transport to -80°C as soon as possible.
6. Tissue samples (Post-mortem)

Sample all organs that exhibit haemorrhagic lesions.

i. Histopathology

Supplies
- Scalpel
- 10% buffer formalin
- Container

Directions
Sample all organs that exhibit haemorrhagic lesions. Tissue size: 1 cm³. Store in 10% buffer formalin. Store 1 part tissue : 10 parts 10% buffer formalin. Okay to put all tissue samples in one container. Store at room temperature. Submit samples within 1 month of collection.

ii. PCR analyses (cPCR and qPCR)

Supplies
- Scalpel
- 50 ml conical tube
- Anti-DNase solution or anti-RNase solution:
 - DNAgard® Tissue (Biomatrica, San Diego, CA; Sigma Aldrich 62501)
 - RNA later (Fischer Scientific AM7022; Sigma Aldrich R0901)
- 96-99% molecular grade alcohol/regular alcohol
- Cooler/cooler with ice/-80°C freezer

Directions
Sample all organs that exhibit haemorrhagic lesions. Tissue size: 1 cm³. Place tissue in 50-ml conical tube.

Storage and shipping preference: (in order of high to lowest preference)

1) Place tissue in 5cc conical tube with equal volume of RNA later. Transport over ice. Place -80°C until analysis.

OR

Place tissue in 5cc conical tube for 1 gm tissue 1 ml of DNAgard® Tissue solution. Transport over ice and freeze it till the extraction

2) Place tissue in conical tube with equal volume of 96-99% alcohol (prefer molecular Grade ethanol or HPLC grade ethanol). Transport over ice. Place -80°C until analysis.
EEHV Diagnostic Testing

In Southeast Asia

Prompt EEHV-HD diagnosis is essential for optimal care of elephants. Molecular methods are the current test of choice. The gold standard is quantitative Polymerase Chain Reaction (qPCR); conventional PCR (cPCR) will suffice if qPCR testing is not available. EEHV qPCR is a rapid specific test that provides viral loads in blood, an important value for determining whether to treat with antivirals. cPCR can take somewhat longer and is only semi-quantitative, but has the advantages of less expensive reagents and equipment, requires less technical training and is a method that allows DNA sequencing of the PCR product, which is useful epidemiologically.

Asian elephants should be tested for EEHV1 [1A/1B], EEHV4, and EEHV5. qPCR assays for EEHV1, EEHV1A, EEHV1B, EEHV4 and EEHV5 are available (as well as assays for the EEHVs found in African elephants—EEHV2, EEHV3, and EEHV6). One of the qPCR tests for EEHV4 also detects EEHV3 and is sometimes referred to EEHV3/4, while another one detects EEHV4 only. If cPCR testing is being done, pan pol primers (reference below) and EEHV1, 3-4, and 5-specific primers should be used. Please check with the researchers listed under Resources below for the current preferred EEHV-specific primers.

Sampling

For an active case, EDTA whole blood is the desired sample; heparin blood can also be used. In a pinch, a clot from a serum separator tube can be tested. Ideally, the blood will be stored refrigerated or frozen until testing; although not ideal, untreated blood and tissue have been tested after several days at room temperature and were positive for EEHV. Post mortem samples to collect include blood, heart, liver, spleen, kidney and any tissues with extensive haemorrhaging.

Current labs

At this time, the following laboratories in Southeast Asia are able to test for EEHV. Check with the laboratory contact to set up testing. We are working to increase the testing capacity in SE Asia and hope to have EEHV qPCR testing available soon in SE Asia.

India
Kerala Veterinary and Animal Sciences University - Dr. Arun Zachariah
Email: zacharun@gmail.com
Indonesia
Medika Satwa Lab - Dr. Adin Priadi
Email: adinpriadi@yahoo.com
Singapore
DSO National Laboratories - Dr. Boon-Huan Tan
Email: tboonhua@dso.org.sg

Supplies

- Scalpel
- Anti-DNase solution or anti-RNase solution: - DNAgard® Tissue (Biomatrica, San Diego, CA; Sigma Aldrich G2501)
- RNA (Fischer Scientific AM7022; Sigma Aldrich R0901)
- 5 ml storage tube
- Cooler with ice

Directions

If carcass is highly putrefied (＞4 days old), take long bone and obtain the bone marrow. Place bone marrow (1-2 g) into equal amounts of anti-RNase solution in 5 ml tube. Keep at 4°C for shipment. Or place tissue in 5 cc conical tube for 1 gm tissue 1 ml of DNAgard® Tissue. Transport over ice and freeze until extraction.

For long-term storage, keep at -80°C. If under field conditions, place under ice and transport to -80°C as soon as possible.

Haemorrhagic heart lesions. Photo: Chatchote Thitaram

Hemorrhaging heart lesions.
Serology
Serology cannot be used for EEHV diagnostics, but may be useful for determining serostatus of the herd. Currently, two groups are working on serological assays for EEHV.

2. Dr Gary Hayward’s group is working on a chip assay to differentiate between the subtypes of EEHV.

Trunk wash and swab testing
Trunk washes and swabs collected over a 1-2 month period may be useful for elucidating what EEHV types are in a herd, with the caveat that only EEHVs that are shed during the collection period will be detected. Latent EEHVs will not be detected by this testing. Check with your preferred testing laboratory to see if they offer trunk wash and/or swab testing.

Helpful resources
1. Arun Zachariah: zcharun@gmail.com
2. Supaphen Sripiboon: ssripiboon@gmail.com
3. Erin Latimer: latimere@si.edu
4. Willem Schaftenaar: w.schaftenaar@rotterdamzoo.nl
5. Lauren Howard: lhoward@sandiegozoo.org
6. Gary Hayward: gary.s.hayward@gmail.com
7. Paul Ling: piling@bcm.edu
8. Ellen Wiedner: Ebwumd@yahoo.com
9. Eehvinfo.org

References for qPCR and cPCR

Thailand
Chiang Mai University - Dr. Chatchoke Thitaram
Email: cthitaram@gmail.com
Kasetsart University - Dr Supaphen Sripiboon
Email: ssripiboon@gmail.com
Mahidol University - Dr Withthawat Wiriyarat
Email: withthawat.wir@mahidol.ac.th

The Veterinary Research and Development Centre (North-eastern region) - Bopit Puyati
Email: bpuyati@gmail.com

References for qPCR and cPCR

APPENDIX 1

EEHV Evaluation Form [OPD card]

OPD. No. __________
Date __________

Elephant’s name ____________________________ Microchip No. ____________________________

Sex □Male □Female Age __________[month/year]

Birth Date __________ □Wild born □Captive born □Hand reared □Parent reared

Type of work □Zoo □Tourism □Logging □Patrol □Other __________

Mahout’s name ____________________________ Owner’s name ____________________________

Address __ Tel. __________________________

Weight __________kg. □True □Calculated from body measurements □Estimated

Nutrition status □Obese □Good □Fair □Poor

History
Is this elephant still parent-fed? □Yes □No □Unknown Weaning age ________ year

Recent transport From ________ To ________

Unusual event
□Extreme environmental changes □Yes, when__________ □No □Unknown
□Human-animal interaction □Yes, when__________ □No □Unknown
□Management changes □Yes, when__________ □No □Unknown
□Mahout changes □Yes, when__________ □No □Unknown
□Training procedure changes □Yes, when__________ □No □Unknown
□Herd status changes □Yes, when__________ □No □Unknown
□Others __________

Exposure history Has this elephant been exposed to the following?
□EEHV confirmed cases □Yes, when__________ □No □Unknown
□Other ill animals □Yes, when__________ □No □Unknown
□Wild elephant □Yes, when__________ □No □Unknown

Medical record
□Vaccination history ____________________________
□Deworming history ____________________________
□Previous illness, testing and treatment history ____________________________
Clinical observation

Behavior changes
- Eating □ Normal □ Abnormal □ Not observed
- Drinking □ Normal □ Abnormal □ Not observed
- Defecation □ Normal □ Abnormal (constipation/diarrhea) □ Not observed
- Urination □ Normal □ Abnormal □ Not observed
- Sleeping □ Normal □ Abnormal □ Not observed
- Locomotion □ Normal □ Abnormal □ Not observed
- Activity/play behaviour □ Normal □ Abnormal □ Not observed

EEHV related signs
- Blood-shot eyes □ Normal □ Abnormal □ Not observed
- Oral mucosa - Lesion: □ Present □ Not present □ Not observed
- Colour: ______________________________________
- Temporal gland swelling □ Present □ Not present □ Not observed
- Head, face or neck swelling □ Present □ Not present □ Not observed
- Mobility/lameness □ Present □ Not present □ Not observed
- Visible skin lesion □ Present □ Not present □ Not observed
- Tongue cyanosis □ Present □ Not present □ Not observed

Physical examination
HR ______________ best/min Pulse __________ time/min RR ______________ best/min
Temp. _____________ °C / °F MM _____________ CRT _____________ second

Lesions

Other examination

Unusual events record (i.e. flooding, drought, disease outbreak)

Frequency of your vet visit Previous vet visit date
Any concerns from your previous vet visit

Recommended sample collection for EEHV diagnosis

<table>
<thead>
<tr>
<th>Aims</th>
<th>Test method</th>
<th>Whole Blood</th>
<th>Serum</th>
<th>Swab</th>
<th>Trunk Wash</th>
<th>Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of virus**</td>
<td>PCR</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Viral load</td>
<td>qPCR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** In active case of EEHV, blood samples (or tissue samples from dead elephants) are recommended. Swabs and trunk wash are not likely to be positive in an active case, but can be used for monitoring shedders in a herd.
APPENDIX 2

Members and Advisors to the Asian EEHV Working Group

Dr Sonja Luz Director C&R, Wildlife Reserves Singapore, WRS, Singapore
Dr Abraham Matheu Senior Veterinarian, Wildlife Reserves Singapore, WRS, Singapore
Dr Chia-De Hsu Pathologist, Wildlife Reserves Singapore, WRS, Singapore
Mr Saravanan Elangovan Curator, Wildlife Reserves Singapore, WRS, Singapore
Mr Kalirathinam Udhay Kumar Junior Animal Management Officer, Wildlife Reserves Singapore, WRS, Singapore
Ms Paige Lee Officer C&R, Wildlife Reserves Singapore, WRS, Singapore
Dr Boon-Hoon Tan Singapore National Defence, DSQ, Singapore
Dr Chatchote Thitaram Director, Center of Excellence in Elephant Research & Education, Faculty of Veterinary Medicine, CMU, Thailand
Dr Khajsepai Boonprasert Head of South Elephant Hospital, National Elephant Institute, FIO, Thailand
Dr Preecha Phuangkham Veterinarian, Friends of Asian Elephant Foundation, Thailand
Dr Taweepotee Angkawanich Manager, National Elephant Institute, FIO, Thailand
Dr Chamnaron Srisa-arad Save Elephant Foundation Thailand, Thailand
Ms Supaphen Srijbhoen PhD candidate/University lecturer, Murdoch University/Kasetsart University, Thailand
Dr Erica Ward Veterinarian, Thailand
Mr Pallop Tunkaw Research scientist, Faculty of Veterinary Medicine, CMU, Thailand
Dr Chamnaron Srisa-arad Save Elephant Foundation Thailand, Thailand
Dr Christopher Stremme Wildlife Veterinarian, Faculty of Veterinary Medicine at the Syiah Kuala University Banda Aceh, Indonesia
Dr Bongot Huaze Mulia Veterinarian, Taman Safari Indonesia 1 - Bogor, Indonesia
Dr M. Narang Tejo Laksono Veterinarian, Taman Safari Indonesia 2 - Prigen, Indonesia
Dr Muhammad Agil Researcher, Veterinary Faculty of the Bogor Agricultural Institute, Indonesia
Dr Adin Priadi Research scientist, Salwa Osa Medical Lab for Animal health, Bogor, Indonesia
Dr Zaw Min Do Assistant Manager (Veterinarian), Myanmar Timber Enterprise, Myanmar
Dr Ye Htet Aung Professor, University of Veterinary Science, Myanmar
Dr Myo Nay Zar Veterinarian, Myanmar Timber Enterprise, Myanmar
Mr U Mya Thant Deputy General Manager, Sapang Extraction Agency, Myanmar
Dr Aung Thura Soe Elephant Veterinarian, Sapang Division, Myanmar
Dr Vanhinh Pham Van Thinh Veterinarian, Daklak Elephant Conservation Center, Vietnam
Dr Dung Chanda Head Veterinarian, Wildlife Alliance, Vietnam
Mr Nick Marx Wildlife Rescue Director, Wildlife Alliance, Vietnam
Mr Sithy Try Head Keeper, Wildlife Alliance, Vietnam
Dr Yotsana Chanthavong Deputy of Division of Veterinary Services/Vet technician of ElephantAsia, ElephantAsia Project, Division of Veterinary Services, Department of Livestock and Fisheries, Laos
Dr Senthivel Nathan Assistant Director, Sabah Wildlife Department, Malaysia
Mdm Nurzhiarulina Binti Othman Elephant Conservation Officer, Gunan Girangi Field Centre, Malaysia
Dr Diana A. Ramirez Saldivar Assistant Manager, Wildlife Rescue Unit, Malaysia
Dr Arun Zachariah Assistant Professor, Kerala Veterinary and Animal Sciences University, India
Dr N Kalavanan Veterinary Assistant Surgeon, Tamil Nadu Government, Department of Animal Husbandry, India
Dr Kushal Kenwar Professor and Head of Department of Surgery & Radiology, Assam Agricultural University, India
Dr Apurba Chakraborty Director of Research (Vet), Assam Agricultural University, India
Dr Chandana Veterinary Surgeon, Pinnawala, Sri Lanka
Dr Vijha Perera Veterinary Surgeon, Department of Wildlife Conservation, Sri Lanka
Ms Erin Latimer Research scientist, National Elephant Herpesvirus Laboratory, Smithsonian Conservation Biology Institute, USA
Dr Elkan Wiedner Veterinarian at Cheyenne Mountain Zoo, Colorado Springs, Colorado, USA
Ms Heidi Riddle Co-founder and Director of Operations, Riddle’s Elephant and Wildlife Sanctuary [Int’l Elephant Foundation], USA
Dr Lauren L Howard Assoc. Director Vet Services, San Diego Zoo Safari Park, USA
Dr Wendy Kise Research and Conservation Scientist, Ringling Bros. Center for Elephant Conservation, USA
Dr Janine Brown Research Scientist, Smithsonian Conservation Biology Institute, USA
Dr Dennis Schmitt Chair of Veterinary Services and Director of Research, Ringling Bros. Center for Elephant Conservation, USA
Dr Paul D. Ling Associate Professor, Baylor College of Medicine, USA
Dr Willem Schaftenaar Veterinarian/Veterinary Advisor, Rotterdam [Blijdorp] Zoo/European Elephant TAG, Holland

We would like to thank all participants of the 1st ASIA EEHV Working Group meeting as well as the members of the American and European EEHV Working Groups for their contributions to this first Asian EEHV strategy plan.

A special thank you to the chapter champions of this brochure —Dr Lauren Howard, Dr Ellen Wiedner, Dr Erica Ward, Dr Willem Schaftenaar, Dr Chatchote Thitaram, Dr Wendy Kiso, Dr Paul Ling, Dr Chia-De Hsu, Dr Arun Zachariah, Erin Latimer and Heidi Riddle.

Furthermore, we would like to thank Wildlife Reserves Singapore for organising and hosting the 1st ASIAN EEHV Working Group meeting and the Wildlife Reserves Singapore Conservation Fund, Houston Zoo and the International Elephant Foundation for co-funding this important workshop.